Kategorie: Züchtung

Molekulare Marker

Pflanzenzüchtung ist ein sehr zeitaufwändiger Prozess, da viele Merkmale erst in der ausgewachsenen Pflanze sichtbar werden. Mit Hilfe von molekularen Markern kann man aber bereits aus der DNA-Sequenz auf bestimmte Eigenschaften schließen und somit den züchterischen Aufwand extrem verringern.

Molekulare Marker sind nichts anderes als kurze Abschnitte von DNA, deren Sequenz und Lage im Genom genauso bekannt sind wie der Zusammenhang zwischen dem Auftreten des Markers und einer Eigenschaft in der Pflanze. Wenn zum Beispiel eine bestimmte Basenreihenfolge nur bei besonders hitzeresistenten Pflanzen auftritt, dann ist diese Basenreihenfolge der molekulare Marker für Hitzeresistenz. Molekulare Marker können – müssen aber nicht – identisch mit dem Gen für die Eigenschaft sein. Es reicht aus, wenn die Markersequenz sich so nah an dem Zielgen befindet, dass beide immer gemeinsam vererbt werden und man vom Vorhandensein des Markers eindeutig auf das Vorhandensein des Zielgens schließen kann. Der Marker ist sozusagen der Anhänger am Schlüsselbund. Wenn man in seiner Hosentasche den Anhänger ertastet, so kann man sich sicher sein, auch die daran hängenden Schlüssel eingepackt zu haben.

In dem Bild auf der rechten Seite ist zum Beispiel ein bestimmter Genabschnitt mit den Genen für die Korngröße assoziiert (dargestellt in orange oder gelb) während eine andere Sequenz gemeinsam mit den Genen für die Halmform auftritt (dargestellt in hellgrün oder dunkelgrün).

Ob sich ein molekularer Marker in der Pflanze befindet, kann man zum Beispiel mit Hilfe von DNA-Sequenzanalysen herausfinden. Dabei wird die Basenreihenfolge der DNA abgelesen und auf das Vorhandensein des molekularen Markers geprüft. Nur die Jungpflanzen, welche den Marker und damit höchstwahrscheinlich auch das gewünschte Gen aufweisen, werden weiter aufgezogen und vermehrt. Da die Zeit für die Züchtung durch solche molekularbiologischen Methoden extrem verkürzt wird, hat sich dafür der Begriff „Smart Breeding“, also „Intelligente Züchtung“, eingebürgert.

Wie molekulare Marker konkret in der Züchtung eingesetzt werden können und wie die Forschung die Züchter bei der Auffindung von Markern unterstützen kann, wird im folgenden „pimp your brain“ Video erklärt:

Was ein Textmarker ist, weiß jeder. Was ist aber mit einem Marker gemeint, wenn es um Pflanzenforschung geht und was versteht man unter Marker-unterstützte Selektion? Karin Köhl vom Max-Planck-Institut für molekulare Pflanzenphysiologie in Golm bei Potsdam gibt in diesem „pimp your brain“ Beitrag darauf die Antworten.

Welche Sequenzen dienen als molekulare Marker?

Molekulare Marker befinden sich oft in der nicht-codierenden DNA, also in den Bereichen des Genoms, die nicht in Proteine umgeschrieben werden. Es handelt sich dabei zum Beispiel um kurze Tandemwiederholungen wie ATCATCATCATC (engl. Short Tandem Repeats = STR) oder Punktmutationen (engl. Single Nucleotide Polymorphisms = SNP).

Wozu braucht man Marker noch?

Marker kommen auch bei der Transformation, also dem Einfügen fremder Gene in einen Organismus, zum Einsatz. In diesem Fall spricht man von Selektionsmarkern: Da die Transformation mit Agrobakterien oder mit der Genkanone nicht bei allen Zellen funktioniert, muss man die erfolgreich transformierten Zellen selektieren, also auslesen. Aus diesem Grund koppelt man das Zielgen an ein Markergen, welches zum Beispiel die Information für eine Antibiotikaresistenz verschlüsselt. Die transformierten Pflanzenteile werden dann auf einem antibiotikahaltigen Nährboden kultiviert. Dabei überleben dann nur die erfolgreich transformierten Pflanzen, da nur sie das Resistenzgens besitzen. Auch Gene, die der Pflanzenzelle die Aufnahme und Verwertung bestimmter Nährstoffe ermöglichen, kommen als Marker zum Einsatz. Die so transformierten Pflanzenzellen überleben auf Agar der ausschließlich Nährstoffe enthält, die sonst für die Pflanze gar nicht verwertbar wären.

Will man ausschließlich den Erfolg einer Transformation beurteilen ohne die transformierten von den nicht-transformierten Zellen zu trennen, hat sich das grünfluoreszierende Protein (GFP) als besonders praktisch erwiesen. Pflanzenzellen, die dieses Protein exprimieren, leuchten unter UV-Licht grün. Forscher des Max Planck Instituts für Molekulare Pflanzenphysiologie haben diese Methode erfolgreich für Tomaten etabliert

Hybridzüchtung

Bei Populationen mit starker Inzucht werden die Nachkommen immer schwächer und krankheitsanfälliger. Kreuzt man jedoch zwei von starker Inzucht gebeutelte Individuen, so zeigen deren Nachkommen eine besonders hohe Leistungsfähigkeit. Dieser Effekt heißt Heterosis. Auf ihm basiert der Erfolg von Hybriden.

Inzucht kommt im Pflanzen- wie im Tierreich vor. Einige wenige Pflanzenarten sind sogar auf Selbstbestäubung spezialisiert (z.B. Gerste). Bei den meisten aber kommt es zur Inzuchtdepression: die Pflanzen werden krankheitsanfälliger, unfruchtbar oder zeigen geringere Erträge. Es kann jedoch auch sein, dass zwei geschwächte Inzuchtlinien besonders leistungsstarke und widerstandsfähige Nachkommen hervorbringen. Was könnte der Grund dafür sein?

Read More

Nutzung der genetischen Diversität

Die heutigen Tomatenpflanzen mit ihren großen roten Früchten sind das Produkt langjähriger intensiver Zuchtarbeit. Ursprünglich stammt die Tomate aus Südamerika und wurde von den Spaniern nach Europa gebracht. Hier wurde über Generationen hinweg der leicht bittere Geschmack der Früchte ausgemerzt und die Tomate eroberte sich einen wichtigen Platz in unserem Speiseplan.

Bei der Sortenzüchtung durch Kreuzung und Auslese sind mit der Zeit viele wichtige Eigenschaften der Wildtomatenpflanze aus dem Genpool der Kultursorten eliminiert worden. So kommt es, dass unsere heutigen Tomatenpflanzen extrem pflegebedürftig sind. Sie müssen ausreichend mit Wasser und Nährstoffen versorgt werden, denn mit Trockenheit oder Nährstoffmangel kommen sie gar nicht gut zurecht. Außerdem sind viele Sorten anfällig gegenüber Pilzkrankheiten wie Mehltau oder Virusinfektionen.

Wildtomatenpflanzen haben ein viel größeres genetisches Reservoir. Sie sind sehr gut an ihre trockenen Standorte angepasst und kommen auch mit hohen Salzgehalten zurecht. Außerdem hat man einige Arten identifizieren können, die Resistenzen gegenüber Pilzkrankheiten aufweisen. Bisher weiß man jedoch nicht, welche Gene für die unterschiedlichen Eigenschaften der Tomaten verantwortlich sind.

Introgressionslinien

Bei der Erzeugung von Introgressionslinien werden einzelne Gene aus einer Art in eine verwandte Art überführt (lat. Introgression = Einkreuzung). Ausgangsmaterial für Introgressionslinien sind je eine Wild- und eine Kulturpflanzenart, die miteinander gekreuzt werden.

Die daraus resultierende Tochtergeneration hat ein Genom, das zu jeweils 50 Prozent aus Wild- und Kulturtomatenchromosomen besteht.

Während der Keimzellbildung der F1-Pflanzen kann es vorkommen, dass die Chromosomen Teilstücke untereinander austauschen (Crossing over). Dabei entstehen Chromosomen, die teilweise aus Kulturtomatengenen und teilweise aus Wildtomatengenen bestehen.

Die Pflanzen der F1-Generation werden jetzt mehrmals mit der Kulturtomatenpflanze gekreuzt. Dieser Vorgang heißt Rückkreuzung und dient dazu, den Anteil des Wildpflanzen-Genoms auf kurze Bereiche zu minimieren. Die dabei entstehenden Linien werden Introgressionslinien genannt und können teilweise neue, mitunter bessere, Eigenschaften aufweisen als die ursprüngliche Kulturpflanze.

Durch Sequenzanalyse kann man herausfinden, welche Abschnitte der DNA aus dem Genom der Wildpflanze stammen. Mit dieser Methode finden Forscher heraus, in welchen Bereichen der DNA bestimmte Eigenschaften verschlüsselt werden.

Bei der Erzeugung von Introgressionslinien werden einzelne Gene aus einer Art in eine verwandte Art überführt (lat. Introgression = Einkreuzung). Ausgangsmaterial für Introgressionslinien sind je eine Wild- und eine Kulturpflanzenart, die miteinander gekreuzt werden.

Züchtung mit Hilfe gentechnischer Methoden

Viele Nutzpflanzen werden von Schädlingen angegriffen. Besonders der Mais hat unter dem Maiszünsler und dem Maiswurzelbohrer zu leiden. Da Insektenvernichtungsmittel nur begrenzt wirksam sind, haben Forscher der Maispflanze Selbstverteidigung beigebracht.

Bei gentechnisch veränderten oder transgenen Pflanzen handelt es sich um Pflanzen, in deren Erbgut ein oder mehrere Gene aus einer anderen Pflanze oder einem anderen Organismus eingebracht worden sind. Diese Gene können entweder die Ausprägung einer neuen Eigenschaft bewirken (z.B. einer Resistenz gegen Krankheiten) oder ein bereits vorhandenes Merkmal der Pflanze verstärken oder abschwächen (z.B. die Unterdrückung der Produktion von Amylose bei der Kartoffel). Vor allem außerhalb Europas ist die grüne Gentechnik etablierter Bestandteil der Pflanzenzüchtung.

Mais mit Selbstverteidigungsgen

Viele Landwirte leiden unter Ernteeinbußen, weil ihre Maispflanzen vom Maiszünsler befallen worden sind. Die Larven dieses Insektes bohren sich in den Stängel der Maispflanze und stören somit den Wasser- und Nährstofftransport aus der Wurzel in die oberen Pflanzenteile. Manchmal kommt es auch zum Bruch des Maisstängels und damit  zum vollständigen Absterben der Pflanze.

Ein wirksames Mittel gegen die Larven des Maisbohres ist ein Protein, das auch Bt-Toxin genannt wird. Seinen Namen verdankt es dem Bakterium Bacillus thuringiensis, welches dieses Protein produziert. Bt-Toxine, von denen es viele verschiedene Varianten gibt, werden nur im Darm der Larven aktiv. Dort wird die inaktive Vorstufe in ein aktives, toxisches Protein umgewandelt. Dieses greift die Darmwand an und löst sie schließlich auf, die Larven sterben ab.

Schon seit 1938 werden Bt-Toxine zum Pflanzenschutz in der Landwirtschaft eingesetzt, indem sie als Proteinlösung auf die Pflanzen gespritzt werden. Diese Bekämpfung ist aber nur in der sehr kurzen Zeitspanne zwischen dem Schlüpfen der Larven und ihrem vollständigen Eindringen in den Stängel der Maispflanze möglich. Danach kann den Schädlingen das Pflanzenschutzmittel nichts mehr anhaben.

Mit Hilfe von Gentechnik ist es Wissenschaftlern gelungen, ein Gen, welches für das Bt-Toxin kodiert, in das Genom der Maispflanze einzubringen. Die Pflanze kann jetzt selber das für den Maiszünsler giftige Protein bilden und sich somit gegen ihren größten Feind verteidigen.

Entgegen vieler Befürchtungen ist das Bt-Toxin für Menschen, Tiere und Fische nicht giftig. In unserem Magen kann die harmlose Protein-Vorstufe (die vom Mais gebildet wird) nicht in das giftige Protein umgewandelt werden. Außerdem befinden sich an unseren Darmzellen andere Rezeptoren, so dass Bt-Toxine sich nicht an die Zellen anheften und sie demzufolge auch nicht zerstören können. Bt-Toxine schützen auch Baumwollpflanzen und Kartoffeln.

Wie man Gene mit Hilfe von Gentechik in die Pflanze einbringen kann erklären wir euch in unserer Animation zur Agrotransformation: 

Transformation – Das ist die Integration neuer Gene stabil in die DNA von Pflanzen. Das bedeutet, dass die Pflanzenzellen diese neue DNA als Teil ihrer eigenen betrachten, ablesen und die entsprechenden Proteine herstellen.

Weitere Zuchtziele

Neben der Resistenz gegen Schädlinge gibt es noch weitere Zuchtziele, die mit Hilfe von Gentechnik verfolgt werden oder sogar bereits erreicht worden sind. Dazu gehören:

  • Herbizidresistenz
  • Trockentoleranz
  • Pflanzen mit veränderten Inhaltsstoffen

Eine Herbizidresistenz erleichtert die Unkrautbekämpfung auf den Feldern. Trockentolerante Pflanzen verbessern in Ländern mit wenig Niederschlag, also vor allem in Afrika, die Ernteerträge. Pflanzen mit neuen Eigenschaften können sowohl in der Industrie als auch in Ländern mit Mangelernährung von Bedeutung sein. Das wohl bekannteste Beispiel ist der Goldene Reis, der in seinen Körnern Beta-Carotin (Provitamin A) produziert. In vielen asiatischen Ländern, in denen Reis das Hauptnahrungsmittel für die Bevölkerung ist, leiden besonders Kinder an Vitamin A-Mangel. Der Goldene Reis soll diesen Mangel bekämpfen und die Kinder vor dem Erblinden bewahren.

Steckt in meinem Essen Gentechnik drin?

In Deutschland und großen Teilen der EU gibt es seit 2013 keinen Anbau von gentechnisch veränderten Pflanzen im Freiland. Hier beschränkt sich der Einsatz gentechnischer Methoden auf die Forschung im Labor. Weltweit findet dagegen ein umfangreicher Anbau von genetisch veränderten Organismen ( GVO) statt, wie z.B. in Nord- und Südamerika, China und Indien. Zu den hauptsächlich genutzten transgenen Pflanzen zählen u.a. Mais, Soja, Baumwolle und Raps, die zum Teil auch in der EU zugelassen sind und somit zur Herstellung von Futter- und Lebensmitteln genutzt werden dürfen. Für Produkte aus diesen Pflanzen gilt in der EU eine Kennzeichnungspflicht, d.h. Produkte, die GVO-Anteile enthalten, müssen für den Verbraucher sichtbar und verständlich gekennzeichnet werden.

Der Umgang mit gentechnischen Methoden ist europaweit gesetzlich reguliert, ebenso wie der Anbau und die Einfuhr von gentechnisch veränderten Futter- und Lebensmitteln. Eine Zulassung für diese Produkte muss durch die Europäische Behörde für Lebensmittelsicherheit (EFSA), die EU-Kommission und für Deutschland vom Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL) genehmigt werden. In Deutschland überwachen und kontrollieren die Behörden der Bundesländer die Einhaltung der Kennzeichnungspflicht. Hierfür gibt es verschiedene Verfahren.

Um nachzuweisen, ob man es mit gentechnisch veränderten Pflanzen, Lebens- oder Futtermitteln zu tun hat, gibt es verschiedene analytische Verfahren, wie die Polymerase-Kettenreaktion (PCR). Dieser Nachweis findet auf DNA-Ebene statt, d.h. hier wird die neu eingefügte DNA Sequenz direkt nachgewiesen.
Im Fall des GVO-Nachweises wird eine spezielle Form der PCR durchgeführt, die sogenannte quantitative PCR. Diese ermöglicht neben dem Nachweis des neu eingebrachten Gens in eine Pflanze auch eine Ermittlung der DNA-Menge in einem bereits verarbeiteten Lebensmittel, wie beispielsweise Brot.
Eine andere Technik wird durch sogenannten Markergene möglich. Ein solches Markergen wird zusätzlich zu dem eigentlichen neuen Gen in die Pflanze eingebracht (vergleiche Transformation/Genkassette) und verleiht der Pflanzen einen Vorteil, wie z.B. eine Antibiotikaresistenz. Diesen Vorteil nutzt man ursprünglich, um zu überprüfen, ob das gewünschte neue Gen erfolgreich in die Pflanze eingebracht wurde, aber auch zum Nachweis von GVO kann man sich diese Eigenschaft nun zunutze machen. Hierfür sammelt man die Samen von zu untersuchenden Pflanzen und sät diese beispielsweise auf einem antibiotikahaltigem Substrat neu aus. Stammen die zu untersuchenden Samen von gentechnisch veränderten Pflanzen können sie hier auskeimen, andernfalls nicht.

Positiv ist nicht gleich positiv – auch Nachweisverfahren haben ihr Grenzen

Viele GVOs werden nach einem ähnlichen Muster hergestellt, d.h. für die Start- oder Stoppsequenzen in der Genkassette des verwendeten Plasmids werden jeweils die gleichen Informationen (DNA-Sequenzen) genutzt. So kann bei einem Nachweisverfahren, wie der PCR, gleichzeitig auf ganz verschiedene GVOs getestet werden. Diese allgemeine Überprüfung kann allerdings auch zu falsch-positiven Ergebnissen führen, d.h. ein positives Ergebnis bedeutet nicht gleich, dass man einen GVO identifiziert hat.

Gründe für falsch-positive Signale gibt es viele. Wird z.B. der sogenannte 35S-Promotor für die Untersuchung genutzt, ist eine natürliche Verunreinigung bei der Probennahme im Feld nicht auszuschließen. Der 35S-Promotor stammt von dem Blumenkohlmosaikvirus, welches ein Pflanzenvirus ist, das verschiedene Gewächse der Kreuzblütler-Familie, wie verschiedene Kohlarten, Rettich, Radieschen und Kohlrabi, befällt. Ein Befall der zu untersuchenden Pflanzen durch diesen Virus würde also ebenfalls zu einem positiven Ergebnis in der PCR-Analyse führen. Die Wahrscheinlichkeit für solch eine Kontamination ist nicht zu verachten, wenn man bedenkt, dass durchschnittlich ca.  50% des Blumenkohls und 10% des Kohls von diesem Virus befallen sind.

Darüber hinaus kann es zu einer Verunreinigung der Probe durch fehlerhaften Umgang mit Proben und Referenzmaterial, durch fehlerhaften Gebrauch von Laborequipment, wie mehrfache Verwendung von Pipetten oder während des Transports kommen. Auch die Auswahl von richtigen Primern ist eine schwierige Aufgabe und kann zu fehlerhaften Ergebnissen führen. Da ein Primer nur eine sehr kurze Sequenz hat, muss diese eindeutig sein, so dass sie spezifisch an das zu untersuchende Gen bindet und nicht zu anderen DNA-Bereichen in der Probe passt.

Ein zweifelsfreier Nachweis kann nur durch eine gezielte PCR erfolgen, die das fremde Gen direkt identifiziert. Für diesen Nachweis muss die DNA-Sequenz des Gens allerdings genau bekannt sein.

Mutationszüchtung

Unsere DNA ist natürlichen Mutationen unterworfen. Trotz sehr guter Reparaturmechanismen kann es zum Beispiel bei der Zellteilung vorkommen, dass eine falsche Base in die DNA eingebaut wird. Manche dieser Mutationen haben keinerlei Auswirkungen, sie werden „Stumme Mutationen“ genannt. Es kommt aber auch dazu, dass veränderte Proteine produziert werden, die der Zelle neue Eigenschaften verleihen, oder dass ein Gen so verändert wird, dass es kein funktionsfähiges Protein mehr produzieren kann. Diesen Effekt macht man sich bei der Mutationszüchtung zunutze.

Bei der Mutationszüchtung werden durch mutagene Chemikalien wie EMS (Ethylmethansulfonat) zufällig Punktmutationen ins Genom eingefügt. Da die  DNA dabei unkontrolliert verändert wird, sind viele der so erzeugten Mutanten nicht lebensfähig oder weisen unerwünschte Veränderungen auf. Sie müssen dann aufgrund von Defekten entsorgt werden. Natürlich treten auch erwünschte Mutationen auf, die den Pflanzen neue, bessere Eigenschaften verleihen. Wenn solch eine Mutation identifiziert worden ist, muss sie durch Kreuzung wieder in eine leistungsfähige Zuchtlinie überführt werden.

Wie findet man die Mutationen?

Wenn sich eine falsche Base in der DNA befindet, kann der komplementäre Strang sich nicht mehr korrekt anlagern und die DNA bildet an dieser Stelle einen Buckel aus. Bestimmte Enzyme, wie zum Beispiel das Cel1, erkennen die Buckel und schneiden die DNA an den verformten Stellen durch. Es entstehen also mehrere kleine DNA-Abschnitte.

Mit Hilfe von Gelelektrophorese kann man die Länge der DNA-Stücke sichtbar machen. Sind alle DNA-Stränge gleich lang, so hat das Enzym keine Verformung erkannt und es liegt keine Mutation vor. Treten DNA-Stränge unterschiedlicher Länge auf, zeigt das eine Aktivität des Schneideenzyms an. Man ist auf eine Mutation gestoßen. Diese Methode wird TILLING  genannt.

Mutationszüchtung unterliegt keinen gesetzlichen Regelungen, da keine Gene aus anderen Organismen eingeführt werden, sondern die natürliche Mutationsfrequenz erhöht wird. Auf diese Weise ist zum Beispiel eine Kartoffel gezüchtet worden, die keine Amylose mehr produziert. Das [/glossary]Gen[/glossary] für Amylose ist durch eine zufällige Mutation abgeschaltet worden.

Die Gel-Elektrophorese ist eine in der Molekularbiologie, Biochemie und Lebensmittelanalytik häufig eingesetzte Methode um verschiedene Moleküle voneinander zu trennen. Mercedes, Doktorandin am Max-Planck-Institut für molekulare Pflanzenphysiologie erklärt, wie die Gelelektrophorese funktioniert und wozu sie diese Methode für ihre Forschung einsetzt.

Auslese- und Kombinationszüchtung

Die Auslese- und die Kombinationszüchtung sind die ältesten Formen der Pflanzenzüchtung. Dabei werden aus Wildpflanzen diejenigen mit vorteilhaften Eigenschaften ausgewählt und nur ihre Samen für eine erneut Aussaat verwendet. Durch das Auftreten von zufälligen Mutationen oder das Einkreuzen anderer Arten ist zum Beispiel aus dem Einkorn unser heutiger Weizen entstanden.

Zu Beginn der Steinzeit lebten Menschen als Jäger und Sammler. In der Epoche, die man heute als Jungsteinzeit bezeichnet, wurden sie sesshaft und es traten erste Formen von Ackerbau und Viehzucht auf.

Schon bald fiel den ersten Ackerbauern auf, dass manche Getreidepflanzen bessere Eigenschaften aufwiesen als andere. Im nächsten Jahr nutzten sie dann nur die Samen dieser Pflanzen zur Aussaat. Alle anderen wurden von der Vermehrung ausgeschlossen. Durch diese Auslese entstanden, über viele Generationen hinweg, so die ersten kultivierten Nutzpflanzen.

Aber nicht immer reicht eine reine Auslese der besten Vertreter einer Art aus um zum gewünschten Zuchtziel zu gelangen. Manchmal hilft erst eine Kombination aus Genen verschiedener Pflanzen. Das kann zufällig passieren oder vom Menschen herbeigeführt werden. Gemäß der ersten Mendel’schen Regel sind die Nachkommen der ersten Tochtergeneration (F1-Generation) uniform. Das bedeutet, dass sie alle die gleichen Merkmale besitzen. Problematisch wird es in der  Enkel- und Urenkelgenerationen, hier spalten sich die Merkmale wieder auf. Deshalb ist es notwendig, über mehrere Generationen hinweg die geeigneten Nachkommen zu selektieren (auszuwählen).

Ziele bei der Züchtung von Nutzpflanzen

1. Vergrößerung des nutzbaren Pflanzenorgans (größere Körner, größere Samen)
2. stabile Ährenspindel bzw. keine automatische Öffnung der Schoten
3. Gleichzeitige Reifung aller Samen oder Früchte
4. Elimination der Samenruhe (Dormanz)
5. Aufrechtes Wachstum

Vom Einkorn zum Weizen

Eine der ersten kultivierten Getreidearten war das Wildeinkorn (Triticum urartu). Es ist ein anspruchsloses Süßgras mit guter Krankheitsresistenz. Jedoch bildet Wildeinkorn nur wenige kleine Körner und hat eine brüchige Ährenspindel. Durch beständige Auslese der besten Einzelpflanzen züchteten die Menschen aus dem Wildeinkorn das kultivierte Einkorn (Tritium monococcum) mit größeren Körnern und fester Ähre.

Diese Art der Auslese allein hätte aber nicht ausgereicht um aus dem Einkorn unseren heutigen Weizen zu züchten. Dabei kam unseren Vorfahren auch der Zufall zu Hilfe.

Durch spontane – also zufällige – Kreuzung mit einem anderen wilden Gras (Aegilops speltoides)* entstand der wilde Emmer (Triticum dicoccoides), auch Zweikorn genannt. Die beiden Elternlinien besaßen jeweils einen diploiden Chromosomensatz; jedes Chromosom lag doppelt im Zellkern vor. Bei der Kreuzung kam es zu einer Verdoppelung der elterlichen Chromosomensätze, sodass der Emmer tetraploid ist. Organismen, in denen Chromosomensätze aus unterschiedlichen Arten vorliegen, bezeichnet man als allopolyploid.

Aus dem wilden Emmer wählten Ackerbauern über viele Generationen hinweg wiederum die besten Pflanzen aus und es entstand der kultivierte Emmer (Triticum dicoccum). Dieser Emmer ist ein Vorläufer der ebenfalls tetraploiden Weizenart Hartweizen (Triticum durum), die besonders wichtig für die Herstellung von Nudeln und ähnlichen Teigwaren ist.

Wirtschaftlich und für unsere Ernährung bedeutsamer ist jedoch Weichweizen, der sogar einen hexaploiden Chromosomensatz aufweist. Der zusätzlich diploide Chromosomensatz kam vermutlich durch eine spontane Kreuzung mit dem diploiden Gras Aegilops tauschii* in das Genom. Dabei entstand zunächst der Dinkel (Triticum spelta) aus dem durch weitere Züchtung der Weichweizen (Triticum aestivum) entstand. Weichweizen ist ein wichtiger Ausgangsstoff für die Produktion von Brot und anderen Backwaren. Inzwischen ist Weizen nach Mais das am zweithäufigsten angebaute Getreide der Welt.

*wird manchmal als Triticum speltoides, manchmal als Aegilops speltoides bezeichnet, das gleiche bei Triticum/Aegilops squarrosa

Hier erklärt Eicj Kathleen, wie durch zufällige Einkreuzung von Wildgräsern unser Weizen entstanden ist.

Wir wissen, dass Weizen zum Brot backen verwendet wird oder aus Hartweizen Nudeln hergestellt werden, aber wer weiß schon, dass Weizen vor langer, langer Zeit aus Wildgräsern entstanden ist?

Was ist Triticale?

Die Getreideart Triticale ist vielen unbekannt. Dabei ist Triticale nichts weiter als eine Kreuzung aus Weizen und Roggen. Ziel dieser Kreuzung war es, die guten Eigenschaften beider Arten zu vereinen und die schlechten Eigenschaften auszulöschen.

Roggen hat keine hohen Ansprüche an Boden oder Klima und wächst auch auf nährstoffarmen Böden relativ gut. Dafür liefert er aber im Vergleich zum Weizen niedrigere Ernteerträge.

Weizen braucht einen ausgezeichneten Boden und viel gutes Wetter, bringt dafür aber auch viele qualitativ hochwertige Körner mit guten Klebeeiweißen (wichtig beim Backen) hervor.

Bestäubt man Weizenblüten mit dem Pollen von Roggenpflanzen so entsteht Triticale. Der Name dieser künstlichen Getreideart setzt sich aus den lateinischen Namen der beiden Elternpflanzen zusammen: Triticum, der Weizen, und Secale, der Roggen.

Jedes Elternteil vererbt die Hälfte seines Chromosomensatzes an die Nachkommen weiter. Das Problem hierbei ist, dass der zur Kreuzung verwendete Hartweizen tetraploid ist, also jedes Chromosom vier Mal besitzt, und der Roggen nur diploid, also mit je zwei Chromosomensätzen ausgestattet ist. Die Triticale erbt demzufolge drei Chromosomensätze, zwei vom Weizen und einen vom Roggen. Triploide Pflanzen wie Triticale sind oft unfruchtbar, weil bei einer Zellteilung die Chromosomen, aufgrund ihrer ungeraden Anzahl, nicht gleichmäßig auf die Keimzellen aufgeteilt werden können.

Deshalb unterzog man die Keimlinge einer Colchizinbehandlung. Dadurch wurde der Chromosomensatz in den Keimzellen verdoppelt und die Triticale besaß daraufhin einen sechsfachen Chromosomensatz. Damit ist sie fruchtbar und zur Ausbildung eigener Keimzellen fähig.

Vom Wildkohl zu den heutigen Kohlsorten

Rotkohl, Weißkohl, Blumenkohl, Brokkoli und Kohlrabi – dass diese Pflanzen verwandt sind, erkennt man inzwischen nur noch an ihren Namen. Ihr Aussehen ist komplett unterschiedlich und doch haben sie sich alle aus einer Wildart entwickelt: dem Gemüsekohl oder auch Wildkohl. Er stammt ursprünglich aus dem Mittelmeerraum und wächst vor allem an den Küsten Griechenlands, Italiens, Frankreichs und Spaniens.

Doch welche Pflanzenteile sind es eigentlich, die wir bei den einzelnen Kohlarten verzehren? Am einfachsten lässt sich diese Frage beim Grünkohl beantworten, von ihm verzehren wir die verdickten Blätter. Auch von Rotkohl, Weißkohl und Wirsing essen wir die Blätter und die Kohlrabiknollen sind nichts weiter als verdickte Sprossachsen. Doch um was handelt es sich bei Blumenkohl, Romanesco und Brokkoli? Hier landen die noch nicht voll entwickelten Blütenstände auf unseren Tellern. Wenn man die Pflanzen nicht rechtzeitig erntet, sondern weiter wachsen lässt, sieht man bald blühenden Kohl anstatt des typischen Kohlkopfes.

Der Chinakohl ist übrigens näher mit Raps und Rüben verwandt, als mit den übrigen Kohlsorten.

Alles über Kohl erzählt euch Kathleen und stellt Euch die verschiedenen Kohlsorten vor:

Weißkohl, Rosenkohl, Blumenkohl, Grünkohl oder Kohlrabi, bei all diesen Kohlsorten nutzen wir unterschiedliche Pflanzenteile für unsere Mahlzeiten. Welche Teile essen wir und wie sind die verschiedenen Kohlsorten überhaupt entstanden?

Fortpflanzung

Einhäusig – zweihäusig – zwittrig? Pflanzen können verschiedene Blüten ausbilden und mit Hilfe von Wind oder Insekten ihren Pollen auf die Blütennarbe übertragen. Wer sich nicht auf Wind oder Bienen verlassen will, der kann wie die Erdbeere oder die Kartoffel auch auf vegetative Vermehrung zurückgreifen.

Die Vermehrung bei Pflanzen erfolgt entweder sexuell über Bestäubung und Befruchtung oder asexuell über vegetative Fortpflanzung. Bei der sexuellen Fortpflanzung werden in den Staubbeuteln der Pflanzen die männlichen Pollen und im Griffel die weiblichen Eizellen gebildet. Die Blüten verschiedener Arten sind dabei unterschiedlich zusammengesetzt.

  • Zwittrige Blüten vereinen weibliche und männliche Blütenorgane
  • Einhäusige Pflanzen haben getrennte weibliche und männliche Blüten auf derselben Pflanze (z.B. Mais)
  • Zweihäusige Pflanzen haben weibliche und männliche Blüten nur auf getrennten Pflanze (z.B. Brennnesseln)

Manche Pflanzen nutzen ihren eigenen Pollen zur Bestäubung der Narbe (z.B. Gerste und Weizen). Diese Selbstbestäubung hat den Vorteil, dass sich auch in verlassenen unwirtlichen Gebieten aus einer einzigen Pflanze eine ganze Population entwickeln kann.

Andere Pflanzen sind Fremdbestäuber. Sie lassen ihren Pollen von Wind oder Insekten auf andere Pflanzen übertragen (z.B. Mais, Roggen und Sonnenblume). Fremdbestäubung hat den großen Vorteil, dass die Gene durchmischt werden und neue Kombinationen entstehen können, die den Nachkommen vielleicht bessere Eigenschaften verleihen.

Der Pollen von windbestäubten Pflanzen ist meist sehr leicht und klein, damit er sich weit verbreiten kann. Insektenbestäubte Pflanzen besitzen einen schwereren Pollen und zum Anlocken der Insekten besonders große und farbige Blüten.

Bei der vegetativen Vermehrung von Pflanzen werden auf verschiedenen Wegen Klone der Mutterpflanze gebildet, die zu selbständigen Pflanzen heranwachsen können. Dabei kann es sich um Ableger, Rhizome, Knollen oder andere Formen handeln. Ein Beispiel ist die Kartoffel, bei der aus den Augen der Knollen komplette neue Pflanzen heranwachsen können. Erdbeeren können lange Ausläufer bilden, an deren Enden neue Pflänzchen entstehen, die nach Absterben der Verbindung zur Mutterpflanze zu eigenständigen, genetisch identischen Pflanzen werden.

Zellteilung

Wenn Zellen sich teilen, dann sollen beide Tochterzellen genau die gleiche Erbinformation enthalten, wie die Mutterzelle. Damit das klappt, müssen die Chromosomen zunächst einmal verdoppelt werden.

Wir haben gesehen, dass in einem Doppelstrang der DNA nur bestimmte Basen miteinander paaren können. Auch wenn nur ein Strang der DNA bekannt ist, ergibt sich daraus, wie der gegenüberliegende Strang aussehen muss. Genau diese Tatsache ist bei der Verdoppelung (Replikation) der DNA wichtig. Sie beginnt mit der Auftrennung des Doppelstrangs in zwei einzelne Stränge.

Jetzt können Enzyme genau die passenden Basen anlagern und somit zwei neue Doppelstränge erzeugen. Immer wenn die Enzyme Adenin erkennen, fügen sie auf der gegenüberliegenden Seite Thymin an. Bei Cytosin wird auf der anderen Seite Guanin eingebaut und so weiter. Die beiden DNA-Stränge, die auf diese Weise entstehen, werden Schwesterchromatiden genannt. Eigentlich sind sie sogar „Siaemesische Zwillingschromatiden“, denn sie gleichen sich wie ein Ei dem anderen und sind sogar am Zentromer miteinander verbunden. Die Phase des Zellzyklus, in der die DNA verdoppelt wird, wird Interphase genannt.

Abb. DNA-Verdoppelung
Die meiste Zeit liegen im Zellkern fadenförmige 1-Chromatid Chromosomen vor. Die typischen x-förmigen Chromosomen sind nur sichtbar kurz vor bzw. während der Zellteilung (Mitose) bzw. vor der Reduktionsteilung (Meiose). Die übrige Zeit liegen die Chromosomen als diffus aufgelockerte 1-Chromatid-Chromosomen vor, wie dünne Fäden.

Die Mitose – aus eins mach zwei

Auf die Interphase folgt die Mitose, die eigentliche Kernteilung. Damit die langen DNA-Fäden dabei nicht beschädigt werden, werden sie zunächst kondensiert (verdichtet). Die Chromosomen sind dann unter dem Mikroskop als x-förmige Strukturen erkennbar. Den Mittelpunkt des X bildet das Zentromer. Als nächstes lagern sich die Chromosomen in der Äquatorialebene an, also in der Mitte des Zellkerns. Lange dünne Fäden, Spindelfasern genannt, greifen an den Zentromeren an und reißen die Schwesternchromatiden auseinander. Jeweils ein Chromatid jedes Chromosoms wird zu einem der Zellpole gezogen. Dort werden die Chromosomen wieder dekondensiert (entpackt) und es bildet sich eine neue Kernmembran aus. Anschließend teilt sich die Zelle.

Mitose
Mitose

Die Meiose – eine besondere Art der Zellteilung

Bei geschlechtlicher Vermehrung geben die Eltern Erbinformation (Chromosomen) an ihre Kinder weiter. Damit sich nicht mit jeder neuen Generation die Anzahl der Chromosomen verdoppelt, werden Keimzellen gebildet, die nur über den halben Chromosomensatz verfügen. Die meisten Organismen sind diploid und ihre Keimzellen demzufolge haploid. Der Vorgang der Keimzellbildung wird Meiose genannt.

Bei der Meiose ordnen sich die kondensierten Chromosomen paarweise in der Äquatorialebene an. Jeweils ein väterliches und ein mütterliches Chromosom liegen nebeneinander. Genau wie bei der Mitose greifen Spindelfasern an den Zentromeren an. Statt einzelner Chromatide, werden ganze Chromosomen zu den beiden Zellpolen gezogen. Anschließend findet die Zellteilung statt, wie sie oben beschrieben ist.

Erst nach der ersten Teilung werden die Chromosom in ihre beiden Schwesterchromatiden zerlegt und es folgt eine erneute Zellteilung. Aus einer diploiden Zelle sind vier haploide Keimzellen entstanden, deren Erbinformation sich zufällig aus mütterlichen und väterlichen Anteilen zusammensetzt.

Mendel’sche Regeln

Bereits in den 1860er Jahren entdeckte Gregor Mendel bestimmte Gesetzmäßigkeiten, nach denen Gene weitergegeben werden. Er untersuchte die Vererbung anhand von Erbsenpflanzen und führte Kreuzungsexperimente mit gelben und grünen, runzligen und glatten Erbsenfrüchten durch. Anhand seiner Ergebnisse postulierte er zwei Vererbungsregeln, die erst viel später mit der Entdeckung der Chromosomen wirklich verstanden wurden.

Read More

Erbinformation

Jedes Lebewesen besitzt ein Genom, in dem alle Informationen zum Aufbau der Zellen gespeichert sind. Damit es nicht verloren geht oder beschädigt wird, wird es sicher im Zellkern verwahrt. Das Alphabet des Lebens besteht aus nur 4 Buchstaben. Doch wie kann man in so einer Sprache alle wichtigen Informationen unterbringen und wie werden diese entschlüsselt und vererbt?

Read More